翻訳と辞書
Words near each other
・ Praise to the Lord, the Almighty
・ Praise to the Man
・ Praise to the Man (album)
・ Praise with Don Moen
・ Praise Ye Jah
・ Praise You
・ Praise You In This Storm
・ Praise, My Soul, the King of Heaven
・ Praise-God Barebone
・ Praisepit
・ Praises to the King
・ Praises to the Twenty-One Taras
・ Praises to the War Machine
・ Praisesong for the Widow
・ Praishartha
Prais–Winsten estimation
・ Praitori
・ Praitori, Larissa
・ Praiwet Wanna
・ Praiyunpata
・ Praiz
・ Praja
・ Praja Bangalore
・ Praja Foundation
・ Praja Parishad Jammu and Kashmir
・ Praja Party
・ Praja Rajyam Party
・ Praja Socialist Party
・ Prajadhipok
・ Prajadhipok (aircraft)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Prais–Winsten estimation : ウィキペディア英語版
Prais–Winsten estimation

In econometrics, Prais–Winsten estimation is a procedure meant to take care of the serial correlation of type AR(1) in a linear model. Conceived by Sigbert Prais and Christopher Winsten in 1954, it is a modification of Cochrane–Orcutt estimation in the sense that it does not lose the first observation and leads to more efficiency as a result.
==Theory==
Consider the model
:y_t = \alpha + X_t \beta+\varepsilon_t,\,
where y_ is the time series of interest at time ''t'', \beta is a vector of coefficients, X_ is a matrix of explanatory variables, and \varepsilon_t is the error term. The error term can be serially correlated over time: \varepsilon_t =\rho \varepsilon_+e_t,\ |\rho| <1 and e_t is a white noise. In addition to the Cochrane–Orcutt procedure transformation, which is
:y_t - \rho y_ = \alpha(1-\rho)+\beta(X_t - \rho X_) + e_t. \,
for t=2,3,...,T, Prais-Winsten procedure makes a reasonable transformation for t=1 in the following form
:\sqrty_1 = \alpha\sqrt+\left(\sqrtX_1\right)\beta + \sqrt\varepsilon_1. \,
Then the usual least squares estimation is done.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Prais–Winsten estimation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.